Article Mobile View » AIUSSA
×

“ Hello, tester3  test please, go to “create new” menu and follow next steps to register or create new related to options. But, kindly note that, “Create New” is not normally open to all & has some restrictions as per user grade & type."

logo

Article Mobile View

Mobile View

Type: Article
Created By: DILLIP KUMAR BARIK
Title: SCHOOL MATH
Unique Id: 171206153947 Create Time: 2017-12-07 02:39:47 Update Time: 07-12-2017 03:09:12 Category: Education Subcategory: School Summary: School math , Trigonometry
Table of Content of This Article
Page No Photo Page Name
1 Image School Math Formula
2 Image School Trigonometry
Article Image
Details ( Page:- School Math Formula )
______________________________________________________________
 *******BASIC MATH FORMULA FOR SCHOOL STUDENTS******

1. (α+в)²= α²+2αв+в²
2. (α+в)²= (α-в)²+4αв
3. (α-в)²= α²-2αв+в²
4. (α-в)²= (α+в)²-4αв
5. α² + в²= (α+в)² - 2αв.
6. α² + в²= (α-в)² + 2αв.
7. α²-в² =(α + в)(α - в)
8. 2(α² + в²) = (α+ в)² + (α - в)²
9. 4αв = (α + в)² -(α-в)²
10. αв ={(α+в)/2}²-{(α-в)/2}²
11. (α + в + ¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)
12. (α + в)³ = α³ + 3α²в + 3αв² + в³
13. (α + в)³ = α³ + в³ + 3αв(α + в)
14. (α-в)³=α³-3α²в+3αв²-в³
15. α³ + в³ = (α + в) (α² -αв + в²)
16. α³ + в³ = (α+ в)³ -3αв(α+ в)
17. α³ -в³ = (α -в) (α² + αв + в²)
18. α³ -в³ = (α-в)³ + 3αв(α-в)

End of Page
Article Image
Details ( Page:- School Trigonometry )
_____________________________________________________________
*********** TRIGONOMETRY FORMULA FOR SCHOOL ********

ѕιη0° =0
ѕιη30° = 1/2
ѕιη45° = 1/√2
ѕιη60° = √3/2
ѕιη90° = 1
¢σѕ ιѕ σρρσѕιтє σƒ ѕιη

тαη0° = 0
тαη30° = 1/√3
тαη45° = 1
тαη60° = √3
тαη90° = ∞
¢σт ιѕ σρρσѕιтє σƒ тαη

ѕє¢0° = 1
ѕє¢30° = 2/√3
ѕє¢45° = √2
ѕє¢60° = 2
ѕє¢90° = ∞
¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
_______________________________________________________

2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
_________________________________________________________
 ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
 ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв.
 ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
 ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
 тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
 тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
 ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
 ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

 ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
 ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.
 ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
 ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
 тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
 тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
 ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
 ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
_________________________________________________________
α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
 α = в ¢σѕ¢ + ¢ ¢σѕв
 в = α ¢σѕ¢ + ¢ ¢σѕα
 ¢ = α ¢σѕв + в ¢σѕα
 ¢σѕα = (в² + ¢²− α²) / 2в¢
 ¢σѕв = (¢² + α²− в²) / 2¢α
 ¢σѕ¢ = (α² + в²− ¢²) / 2¢α
 Δ = αв¢/4я
 ѕιηΘ = 0 тнєη,Θ = ηΠ
 ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
 ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
 ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
____________________________________________________________
 
ѕιη2α = 2ѕιηα¢σѕα
 ¢σѕ2α = ¢σѕ²α − ѕιη²α
 ¢σѕ2α = 2¢σѕ²α − 1
 ¢σѕ2α = 1 − ѕιη²α
 2ѕιη²α = 1 − ¢σѕ2α
 1 + ѕιη2α = (ѕιηα + ¢σѕα)²
 1 − ѕιη2α = (ѕιηα − ¢σѕα)²
 тαη2α = 2тαηα / (1 − тαη²α)
 ѕιη2α = 2тαηα / (1 + тαη²α)
 ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)
 4ѕιη³α = 3ѕιηα − ѕιη3α
 4¢σѕ³α = 3¢σѕα + ¢σѕ3α
________________________________________________________________________
 ѕιη²Θ+¢σѕ²Θ=1
 ѕє¢²Θ-тαη²Θ=1
 ¢σѕє¢²Θ-¢σт²Θ=1
 ѕιηΘ=1/¢σѕє¢Θ
 ¢σѕє¢Θ=1/ѕιηΘ
 ¢σѕΘ=1/ѕє¢Θ
 ѕє¢Θ=1/¢σѕΘ
 тαηΘ=1/¢σтΘ
 ¢σтΘ=1/тαηΘ
 тαηΘ=ѕιηΘ/¢σѕΘ 
_____________________________________________________________

End of Page